
Here I introduce the generalization error bound of the Domain generalization problem, which is the test domain—or style, sometimes—differs from the training domain.PreliminariesNotations$X \in \mathcal{X} \subset \mathbb{R}^d, Y\in \mathcal{Y} \subset \mathbb{R}$ : Common input and target space$P^i_{XY}$: Data distribution of the i'th domain$S^i\sim P^i_{XY}$: Samples for the i'th domain$\epsilo..
Showing off studying ML/ML - academic reels
2024. 4. 30. 00:46
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- 프렌밀리
- icml2024
- ICML
- LLM
- generativemodeling
- deeplearning4science
- diffusion
- flowmatching
- multiheadattention
- loss-weighting
- DeepLearning
- vscode
- domaingeneralization
- finetuning
- Theme
- 몽중식
- MachineLearning
- Transformer
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
글 보관함