
들어가며딥러닝 연구에서, 다양한 문제들이 기존 loss-function에 sample별로 특정 weight를 부과하는 방법 (Loss-reweighting)으로 풀어져 왔었다. 직관적으로 생각했을 때, 이러한 방식은 "어떤 샘플들을 중점적으로 학습시켜야 하는가?"라는 식의 물음이 이어지는 문제를 풀어내는 도구가 될 수 있었다. 따라서 저런 물음이 많이 나오게 되는 Domain-generalization 문제---어떤 데이터 도메인 (e.g. 그림, 사진, 선화, 애니메이션)을 중점적으로 학습시킬까?---, multi-task 문제---여러 task를 동시에 푸는 모델이 어떤 task (depth estimation, object-detction, segmentation)를 중점적으로 학습해야 할 까?,I..
Showing off studying ML/ML - 특집
2024. 8. 13. 00:36
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- loss-weighting
- DeepLearning
- icml2024
- finetuning
- multiheadattention
- 이문설농탕
- 몽중식
- Transformer
- LLM
- 프렌밀리
- flowmatching
- diffusion
- vscode
- MachineLearning
- ICML
- generativemodeling
- deeplearning4science
- domaingeneralization
- Theme
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
글 보관함